5 research outputs found

    Characterization of a disease-associated mutation affecting a putative splicing regulatory element in intron 6b of the cystic fibrosis transmembrane conductance regulator (CFTR) gene

    Get PDF
    Cystic fibrosis (CF) is a common recessive disorder caused by >1600 mutations in the CF transmembrane conductance regulator (CFTR) gene. About 13% of CFTR mutations are classified as “splicing mutations,” but for almost 40% of these, their role in affecting the pre-mRNA splicing of the gene is not yet defined. In this work, we describe a new splicing mutation detected in three unrelated Italian CF patients. By DNA analyses and mRNA studies, we identified the c.1002–1110_1113delTAAG mutation localized in intron 6b of the CFTR gene. At the mRNA level, this mutation creates an aberrant inclusion of a sequence of 101 nucleotides between exons 6b and 7. This sequence corresponds to a portion of intron 6b and resembles a cryptic exon because it is characterized by an upstream ag and a downstream gt sequence, which are most probably recognized as 5′- and 3′-splice sites by the spliceosome. Through functional analysis of this splicing defect, we show that this mutation abolishes the interaction of the splicing regulatory protein heterogeneous nuclear ribonucleoprotein A2/B1 with an intronic splicing regulatory element and creates a new recognition motif for the SRp75 splicing factor, causing activation of the cryptic exon. Our results show that the c.1002–1110_1113delTAAG mutation creates a new intronic splicing regulatory element in intron 6b of the CFTR gene exclusively recognized by SRp75

    Phenotype of five cases of prenatally diagnosed campomelic dysplasia harboring novel mutations of the SOX9 gene.

    No full text
    Abstract OBJECTIVES: Campomelic dysplasia is a rare congenital skeletal disorder characterized by bowing of the long bones and a variety of other skeletal and extraskeletal defects, many of which can now be identified prenatally using advanced ultrasound equipment. The disorder is caused by mutations in SRY-box 9 (SOX9), a gene that is abundantly expressed in chondrocytes as well as in other tissues. However, the correlation between genotype and phenotype is still unclear. We report five cases of prenatally detected campomelic dysplasia in which the diagnosis was confirmed by molecular analysis. METHODS: Ultrasound examinations were performed between 12 and 32 weeks. Standard fetal biometric measurements were obtained. Fetal sex was determined sonographically and confirmed by chromosomal analysis. Genomic DNA was obtained in four cases before termination of pregnancy from chorionic villi or amniocytes and in one case postnatally from peripheral blood. RESULTS: Skeletal dysplasia, most often limb shortening and bowed femora, was observed in one case in the first trimester, in three cases in the second trimester and in one case, presenting late for antenatal care, in the third trimester. Four of the pregnancies were terminated and one was carried to term. Postmortem/postnatal physical and radiographic examinations confirmed the presence of anomalies characteristic of campomelic dysplasia. A de novo mutation in the SOX9 gene was detected in all four cases that underwent termination. The father of the proband in the case that went to term was a carrier of a somatic mosaic mutation without clinical or radiographic signs of campomelic dysplasia. CONCLUSIONS: It is likely that the integrated expertise of ultrasonographers, obstetricians, pediatricians and clinical geneticists will markedly improve the likelihood of accurate prenatal clinical diagnoses of campomelic dysplasia. This will, in turn, encourage more specific molecular testing and facilitate comprehensive genetic counseling

    The Italian National External quality assessment program in molecular genetic testing: results of the VII roun

    No full text
    Since 2001 the Istituto Superiore di Sanita established a quality assurance programme for molecular genetic testing that covers four pathologies: Cystic Fibrosis (CF), Beta Thalassemia (BT), Fragile X Syndrome (FX), and Familial Adenomatous Polyposis Coli (APC). Since 2009 this activity is an institutional activity and participation is open to both public and private laboratories. Seven rounds have been performed until now and the eighth is in progress. Laboratories receive 4 DNA samples with mock clinical indications. They analyze the samples using their routine procedures. A panel of assessors review the raw data and the reports; all data are managed through a web utility. In 2010 the number of participants was 43, 17, 15, 5 for CF, BT, FX, APC schemes respectively. Genotyping results were correct in 96%, 98.5%, 100%, and 100% of CF, BT, FX, and APC samples, respectively. Interpretation was correct in 74%, 91%, 88%, and 60% of CF, BT, FX, and APC reports, respectively; however inmost of them it was not complete but a referral to genetic counseling was given. Reports were satisfactory in more than 60% of samples in all schemes. This work presents the 2010 results in detail comparing our data with those from other European schemes
    corecore